STING at a Crossroads: Untapped Potential for Innate Immunity

Thomas W. Dubensky, PhD
Tempest Therapeutics
South San Francisco, CA
Disclosures

• Thomas W. Dubensky, Jr. is a paid employee of Tempest Therapeutics and holds stock options in the company, and is an inventor on multiple patents and pending applications related to the STING pathway.
STING at a Crossroads: Overview

• Scientific rationale for targeting STING, revisited
• Clinical-staged STING agonists, status and results
• Have expectations been met—is STING at a crossroads?
• Other approaches and rationale for targeting STING
• Concluding remarks
Rationale for Targeting STING

Cytosolic DNA sensing pathway

STING (Stimulator of Interferon Genes):

- Innate immunity is activated in response to sensing nucleic acids in the cytosol
- Downstream signaling is triggered through binding of cyclic dinucleotides (CDNs)
- CDNs are synthesized by bacteria or host enzyme cGAS in response to binding cytosolic DNA
- Bacterial and host-produced CDNs have unique structures which informs drug design

Rationale for Targeting STING
Cytosolic DNA sensing pathway

Listeria (*Lm*) intracellular infection

Induced IFN-β expression

Rationale for Targeting STING

Tumor-initiated T cell priming is STING-dependent

CD8α⁺ DC production of IFN-β in TME required for tumor inhibition

Tumor-Initiated T cell priming and tumor control is STING—but not TLR-dependent

Fuertes et. al., JEM (2011); Woo, Gajewski, Immunity, (2014)
Rationale for Targeting STING

Synthetic cyclic dinucleotides induce in situ priming and abscopal effect

Corrales and Hix Glickman et al, Cell Reports (2015)
Rationale for Targeting STING

CDN induced anti-tumor efficacy is STING-dependent

Corrales and Hix Glickman et. al, Cell Reports (2015)
Multiple Groups are Targeting STING

Pre-clinical and clinical programs

<table>
<thead>
<tr>
<th>Company</th>
<th>Agent</th>
<th>Delivery</th>
<th>Program</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aduro/ Novartis</td>
<td>ADU-S100</td>
<td>IT</td>
<td>Small-molecule STING agonist</td>
<td>Ph1/2</td>
</tr>
<tr>
<td>Merck</td>
<td>MK-1454</td>
<td>IT</td>
<td>Small-molecule STING agonist</td>
<td>Ph1/2</td>
</tr>
<tr>
<td>Merck</td>
<td>MK-2118</td>
<td>IT/SubQ</td>
<td>Small-molecule STING agonist</td>
<td>Ph1</td>
</tr>
<tr>
<td>Spring Bank</td>
<td>SB11285</td>
<td>IT/IV</td>
<td>Small-molecule STING agonist</td>
<td>Ph1</td>
</tr>
<tr>
<td>GSK</td>
<td>GSK3745417</td>
<td>IV</td>
<td>Small-molecule STING agonist</td>
<td>Ph1</td>
</tr>
<tr>
<td>Bristol-Myers Squibb (IFM)</td>
<td>BMS-986301</td>
<td>IT</td>
<td>Small-molecule STING agonist</td>
<td>Ph1</td>
</tr>
<tr>
<td>Eisai</td>
<td>E7766</td>
<td>Unknown</td>
<td>Small-molecule STING agonist</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Takeda</td>
<td>TAK-676</td>
<td>Unknown</td>
<td>Small-molecule STING agonist</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Takeda/ Curadev</td>
<td>CRD5500</td>
<td>Unknown</td>
<td>Small-molecule STING agonist / “amendable to biconjugation as ADC”</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Abbvie (Mavupharma)</td>
<td>MAVU-104</td>
<td>Oral</td>
<td>ENPP1 inhibitor</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Synlogic</td>
<td>SYNB1891</td>
<td>IT</td>
<td>E. coli engineered to produce high levels of the STING agonist c-di-GMP</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Spring Bank</td>
<td>SB11325/ 11396</td>
<td>IV</td>
<td>Antibody conjugated STING agonists (Targets Unknown)</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Trillium Therapeutics</td>
<td>TTI-10001</td>
<td>Unknown</td>
<td>Small-molecule STING agonist</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Codiak Biosciences</td>
<td>exoSTING</td>
<td>Unknown</td>
<td>Engineered exosome</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Venn Therapeutics</td>
<td>VTX-001</td>
<td>IT</td>
<td>Adenovirus that produces the bacterial STING agonist c-di-GMP</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>iTeos Therapeutics</td>
<td>Unnamed</td>
<td>IV</td>
<td>Small-molecule STING pathway activators</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Nimbus Therapeutics</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Small-molecule STING agonist</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Bicycle Therapeutics</td>
<td>Unnamed</td>
<td>Systemic</td>
<td>Bicycle conjugate</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Selvita</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Small-molecule to activate STING</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Stimunity</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Vectorized cGAMP – “virus like particle”</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>StingInn</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Small-molecule STING agonists/ nucleic acid-based STING activators</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>StingInn/ Vyriad</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Oncolytic viruses encoding STING pathway activators</td>
<td>Precl/Disc</td>
</tr>
<tr>
<td>Venenum Biodesign</td>
<td>Unnamed</td>
<td>Unknown</td>
<td>Small-molecule STING agonist</td>
<td>Precl/Disc</td>
</tr>
</tbody>
</table>

Note:
- **IT** Intratumoral
- **Systemic**
First Clinical Approach to Target STING: Intratumoral (IT)

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>NCT#</th>
<th>Agent</th>
<th>Molecule</th>
<th>Phase / Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aduro/Novartis</td>
<td>NCT03172936</td>
<td>ADUS100</td>
<td>CDN</td>
<td>Study of the Safety and Efficacy of MIW815 With PDR001 to Patients With Advanced/Metastatic Solid Tumors or Lymphomas</td>
</tr>
<tr>
<td></td>
<td>NCT02675439</td>
<td>ADUS100</td>
<td>CDN</td>
<td>Safety and Efficacy of MIW815 (ADU-S100) +/- Ipilimumab in Patients With Advanced/Metastatic Solid Tumors or Lymphomas</td>
</tr>
<tr>
<td></td>
<td>NCT02675439</td>
<td>ADUS100</td>
<td>CDN</td>
<td>Efficacy and Safety Trial of ADU-S100 and Anti-PD1 in Head and Neck Cancer</td>
</tr>
<tr>
<td>Merck</td>
<td>NCT03010176</td>
<td>MK-1454</td>
<td>CDN</td>
<td>Study of MK-1454 Alone or in Combination With Pembrolizumab (MK-3475) in Participants With Advanced/Metastatic Solid Tumors or Lymphomas (MK-1454-001)</td>
</tr>
<tr>
<td>BMS (IFM)</td>
<td>NCT03956680</td>
<td>BMS-986301</td>
<td>CDN</td>
<td>An Investigational Immunotherapy Study of BMS-986301 Alone or in Combination With Nivolumab, and Ipilimumab in Participants With Advanced Solid Cancers</td>
</tr>
<tr>
<td>Springbank</td>
<td>NCT04096638</td>
<td>SB11285</td>
<td>SMNH*</td>
<td>Evaluating Safety and Efficacy of SB 11285 Alone and in Combination With Nivolumab in Patients With Advanced Solid Tumors</td>
</tr>
</tbody>
</table>

Small Molecule Nucleic Acid Hybrid

Clinical Results of Phase 1 Dose Escalation Studies

Publicly disclosed clinical results from ongoing Phase 1 studies with IT STING agonists

Aduro/Novartis (ADU-S100/MIW815): NCT03172936

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Results</th>
<th>Combination (Spartalizumab qmo)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 pts with cutaneously accessible lesions (10 melanoma, 2 uveal pts)</td>
<td>11/40 SD (28%) 2/40 PR (5%)</td>
<td>53 pts (q3wk, 1 wk off) 30 pts (q monthly)</td>
<td>12/53 SD (23%); 4/53 PR (8%); 1/53 CR (2%); 3/8 ≥PR (38%) in PD1-naive TNBC pts; 2 PR in IO relapsed/refractory melanoma pts; 6/30 SD (20%) with q monthly CDN dosing</td>
</tr>
</tbody>
</table>

Merck (MK-1454): NCT03010176

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Results</th>
<th>Combination (Pembrolizumab)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 pts with cutaneously accessible lesions (5 melanoma pts)</td>
<td>4/20 SD (20%)</td>
<td>25 pts</td>
<td>6/25 SD (24%), 6/25 PR (24%); 3/8 PR (38%) in PD1-naive HNSCC pts</td>
</tr>
</tbody>
</table>
Clinical Results of Phase 1 Dose Escalation Studies

Publicly disclosed clinical results from ongoing Phase 1 studies with IT STING agonists

- Sporadic evidence of single agent activity across diverse tumor types
- No consistent observation of abscopal activity as a single agent
- No clear evidence of increased activity by combination with α-PD-1 mAb
- Some encouraging results:
 - Aduro/Novartis: 3/8 \geqPR (38%) in PD1-naive TNBC pts and 2 PR in IO relapsed/refractory melanoma pts
 - Merck: 3/8 PR (38%) in HNSCC in PD1-naïve pts

Are these first clinical results with IT STING agonists disappointing?
Clinical Results of Phase 1 Dose Escalation Studies

Publicly disclosed clinical results from ongoing Phase 1 studies with IT STING agonists

- Sporadic evidence of single agent activity across diverse tumor types
- No consistent observation of abscopal activity as a single agent
- No clear evidence of increased activity by combination with α-PD-1 mAb
- Some encouraging results (single armed studies):
 - Aduro/Novartis: 3/8 ≥PR (38%) in PD1-naïve TNBC pts and 2 PR in IO relapsed/refractory melanoma pts
 - Merck: 3/8 PR (38%) in HNSCC in PD1-naive pts

$MRK human STING data very unimpressive IMHO - 0% ORR as monotherapy, and 24% ORR in combo with pembro for PD-1 naïve pts is not clearly better than pembro alone would be. STING appears to be yet another example of an IO agent that looked great in mice, but flopped in humans...

Injected only 1 lesion mostly. Too early to say in combo. Appears safe and biomarker data is what we want. Looking forward to more!

@ArtKrieg

@jasonlukemd
STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

- Differences between clinical studies
- Differences among molecules in clinical development
- Is STING being activated in the right cell types in the TME to initiate immunity?
- Is STING a validated target?
- Is intratumoral injection the right approach?
STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

Differences between clinical studies:

Aduro/Novartis: NCT03172936

<table>
<thead>
<tr>
<th>Dosing Schedule</th>
<th>Doses Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>IT Injections</td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>10 µg → 1600 µg</td>
</tr>
<tr>
<td>Schedule A</td>
<td>X</td>
</tr>
<tr>
<td>Schedule B</td>
<td>X</td>
</tr>
</tbody>
</table>

Merck: NCT03010176

<table>
<thead>
<tr>
<th>Dosing Schedule</th>
<th>Doses Studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td></td>
</tr>
<tr>
<td>Cycle 2</td>
<td></td>
</tr>
<tr>
<td>Cycle 3</td>
<td></td>
</tr>
<tr>
<td>Cycle 4+</td>
<td></td>
</tr>
<tr>
<td>IT Injections</td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>10 µg → 3000 µg</td>
</tr>
<tr>
<td>Schedule</td>
<td>X</td>
</tr>
</tbody>
</table>

34th Annual Meeting & Pre-Conference Programs
STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

• Differences among molecules in clinical development
 • Aduro, Merck and BMS (IFM) molecules are CDNs; Springbank molecule an SMNH
 • Head-to-head studies have not been conducted
 • CDN avidity and signaling can vary according to STING allele
 • Molecules are not formulated—uptake among phagocytes, somatic cells and tumor cells can be variable
 • The most potent STING ligand is not necessarily the optimal CDN for clinical development

CDN-STING Thermal Stability
(Differential Scanning Flourimetry)

STING activation in human PBMCs
(IFN-β expression)

Corrales and Hix Glickman et al., Cell Reports (2015)
STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

Is STING being activated in the right cell types in the TME to initiate immunity?

- cGAS/STING is ubiquitously expressed
- STING pathway can be epigenetically silenced in tumor cells
- STING activation, and production of IFN-β leading to anti-tumor immunity can be initiated from diverse cells in the TME:
 - Tumor cells, phagocytes, myeloid cells, stroma, endothelial cells
- Level of STING-induced IFN-β and TNF-α affects priming in the TDLN—a Goldilocks effect

STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

Is STING a validated innate immune target?

• Genetic validation—interferonopathies due to dysregulation of STING pathway

- **Humans:**

 STING-associated vasculopathy with onset in infancy (SAVI) (ligand-independent activated STING)

 Aicardi–Goutieres syndrome (AGS), chilblain lupus (TREX-1 mutation)

 Epigenetic silencing of STING in tumor cells

 DNA tumor virus inactivation of STING

- **Mice:**

 STING (TMEM173)/-: HSV-1 virus infection sensitivity

 TREX-1/-: recapitulates human AGS

Gray et al., J. Immunol (2015); Ishikawa et al., Nature (2009); Lau et al. Science (2015); Liu et al., NEJM (2014); Stetson et al., Cell (2008); Xia et al., Cell Reports (2016)
STING at a Crossroads: Interpretation of Initial Clinical Results

Deciphering the data

Is intratumoral injection the optimal approach?

- Limited scope of indications: IT is a first step in clinical development
- Consistency of injection
- Difficult to commercialize
- Unique antigenic repertoire between tumors may limit effectiveness of abscopal effect
- Broad activation of STING in TME globally leading to priming in multiple TDLNs
- Challenge with systemic delivery may be therapeutic index

Rejection Ag(s) in (injected) tumor X may be different from tumor X + 1
Systemic Targeting of STING: Next Step in Therapeutic Development?

- Important next step in therapeutic advancement of innate immunity
- Activation of STING in TME globally leading to T cell priming in multiple TDLNs
- Challenge with systemic delivery may be therapeutic index given ubiquitous expression of cGAS/STING

Possible exception: Phase 1 First Time in Humans (FTIH), Open Label Study of GSK3745417 Administered to Subjects With Advanced Solid Tumors (NCT03843359)

IV administration (amidobenzimidazole)

The Race is On for Systemic Delivery

1st Generation
Novel Formulations
Nanoparticles, lipid-based, etc.

2nd Generation
Small Molecule pro-drugs
[likely several groups]

Conjugated Antibodies
Conjugating a STING agonist to a tumor-directed antibody
[likely several groups]

STING Pathway
cGAS, TREC1, ENPP1, IFI16

To improve the therapeutic window of STING agonist, iTeos selected Cristal Therapeutics nanoparticle technology to control the delivery towards the tumor microenvironment
Source: Company Website

iTeos CEO Michel Detheux says... the target is instead another protein upstream of STING
Source: C&EN article

...non-nucleotide small molecules to indirectly and conditionally modulate the pathway, and we are leveraging this technology to develop orally bioavailable STING activators with first-in-class potential
Source: Financing PR – $20M Series A

Intratumoral Delivery

34th Annual Meeting & Pre-Conference Programs
#SITC2019
TREX-1 Inhibitor Rationale

Systemic approach for targeting STING

- STING is ubiquitously expressed in immune and somatic cell populations
- TREX-1 maintains homeostasis by limiting activation of cGAS-STING in normal cells
- TREX-1 is *induced* by cytosolic DNA resulting from inflammation, DNA repair deficiency, and chemo/radiotherapy
- TREX-1 inhibition enhances dsDNA activation of cGAS and enzymatic production of cGAMP
- TREX-1 *inhibitor* is a systemic approach to localize/partition STING activation in the TME

Adopted from Li and Chen, JEM (2019)
TREX-1 Inhibitor Rationale
Systemic approach for targeting STING

Radiation dose level has opposite effects on TREX-1 expression and IFN-β levels

Demaria. Nature Com, (2017), TREX1 regulates RT induced tumor immunogenicity
Concluding Remarks

• STING is at a crossroads—early monotherapy clinical results did not reflect promise of preclinical studies

• Compelling genetic evidence in humans demonstrates that STING is a central mediator of cancer and autoimmunity

• Multiple players and approaches may reveal a better clinical approach for targeting the STING pathway—*it’s the approach not the target*

• Selective activation of innate immunity in the TME in metastatic disease with systemic therapies may be an optimal clinical approach for effectiveness